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Abstract 

The preparation, kinetics and mechanism of degradation of four amidals (1-4), formed from the reaction of 
benzamide, N-methylbenzamide, nicotinamide, and N-methylnicotinamide with 3,4-dihydro-2H-pyran, are reported. 
The hydrolyses of the N-methyl amidals 2 and 4 were found to follow first-order kinetics. The degradation of amidal 
2 was studied in detail and was catalyzed not only by specific acid catalysis, but also by a general acid catalysis; the 
second-order rate constant for the involvement of H 3 P O  4 was  about 4 M -1 h -1. Amidal 3 was resistant to 
acid-catalyzed degradation in 0.05 M phosphate buffer at pH 3.0 and 37 ° C, whereas the phenyl analogue, 1, under 
similar conditions, exhibited a tl/2 value of 98.4 days. N-methylation of the carboxamide moiety in both the phenyl 
and pyridyl amidals (i.e., 1 and 3, respectively) had a marked accelerating effect on the rate of hydrolysis, and this 
was attributed to the inductive effect of the N-methyl group which stabilizes the proposed transition state in the 
degradation mechanism. In acid media, amidals of 3,4-dihydro-2H-pyran were found to hydrolyze much more slowly 
than acetals and acylals of 3,4-dihydro-2H-pyran due to the greater stability of the protonated amidal species to 
unimolecular C-N bond cleavage. Substitution of an N-nicotinoyl group in place of the N-benzoyl moiety in the 
N-methyl-3,4-tetrahydro-2H-pyran amidal 2 resulted in a much slower rate in the acid-catalyzed hydrolytic cleavage 
reaction. The results indicated that the amidals formed from carboxamides and 3,4-dihydro-2H-pyran undergo 
degradation to the parent carboxamide via an acid-catalyzed unimolecular mechanism. 
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I.  Introduct ion 

The chemical properties and kinetics of degra- 
dation of acetals and acylals have been exten- 
sively studied and several hydrolytic mechanisms 
have been proposed (Fife and Brod, 1968, 1970; 

* Corresponding author. 

Fife and Jao, 1968; Weeks et al., 1968; Anderson 
and Fife, 1969; Brown and Buice, 1973; Fife and 
De, 1974). A number of compounds of this type 
have been evaluated as potential prodrug forms 
of pharmacologically active molecules (Hussain et 
al., 1974, 1978, 1979; Hussain and Rytting, 1974; 
Hussain and Truelove, 1979). Interestingly, rela- 
tively little work has been reported on the prop- 
erties of the structurally related amidals and their 
mechanism of degradation. The purpose of this 
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report was to study the kinetics of hydrolysis of 
the model amidals 1-4, and to compare their 
stability and degradation mechanism to struc- 
turally related acetals and acylals. A further ob- 
jective of this study was to determine, based upon 
their kinetic behavior, whether such amidals could 
be utilized as prodrug forms for drugs containing 
a primary or secondary carboxamide group. 

2. Experimental 

2.1. Materials 

N-Methylbenzamide was purchased from 
Janssen Chimica (Beerse, Belgium), 3,4-dihydro- 
2H-pyran and p-toluenesulfonic acid was ob- 
tained from the Aldrich Chemical Co. (Milwau- 
kee, WI). Chromatographic silica gel (100-200 
mesh) used for column chromatography, monoba- 
sic sodium phosphate (analytical grade) for 
buffers, and HPLC-grade acetonitrile for the mo- 
bile phase were all purchased from Fisher Scien- 
tific (Fair Lawn, N J). 

2.2. Apparatus  

The ~H-NMR and 13C-NMR spectra were 
taken on a Varian VXR-300 NMR Spectrometer 
(operating at 75 MHz for 13C and 300 MHz for 
1H) (Varian Associates, Palo Alto, CA) using 
tetramethylsilane (TMS) as internal standard. 
Melting points were determined on a Capillary 
Melting Point Apparatus (Arthur H. Thomas Co., 
Philadelphia, PA) and are uncorrected. The CHN 
analyses were performed by Atlantic Microlab, 
Inc. (Norcross, GA). 

The high-performance liquid-chromatography 
(HPLC) system consisted of a Spectroflow 400 
Solvent Delivery System (ABI Analytical, Kratos 
Division, Ramsey, NJ), a Rheodyne sample valve 
equipped with a 20 /~1 loop (Rheodyne, Cotati, 
CA), a Spectroflow 773 Absorbance Detector 
(Kratos, Ramsey, N J), and a Hewlett-Packard 
3390A Reporting Integrator (Hewlett-Packard, 
Avondale, PA). The HPLC column was a ~- 
Bondapak Cx8 (30 cm × 3.9 mm i.d.) (Waters, 
Bedford, MA). All pH readings were carried out 

on a digital pH/millivolt meter Model 601 (Orion 
Research, Cambridge, MA). 

2.3. N-(2'-  Tetrahydropyran)benzamide (1) 

To a solution of benzamide (6.05 g, 50 mmol) 
and a catalytic amount of p-toluenesulfonic acid 
(50 mg) in chloroform (100 ml) was added 3,4-di- 
hydro-2H-pyran (10 ml, 110 mmol). The reaction 
mixture was stirred at room temperature 
overnight and then washed with water (2 × 50 
ml), dried over magnesium sulfate, filtered and 
evaporated. The resulting residue was purified on 
a silica gel column, by elution with ethyl 
acetate/hexane (2:3), and recrystallized from a 
mixture of ethyl acetate and hexane to afford the 
desired compound as white crystals (8.4 g, 82%), 
m.p. 127-128 ° C. 1H-NMR (CDC13): /~ 7.30-7.80 
(m, 5H, aromatic H), 6.72-6.86 (d, 1H, NH), 
5.22-5.35 (m, 1H, I'-CH), 3.58-4.05 (m, 2H, 6'- 
CH2), 1.42-1.96 (m, 6H, 3'-, 4'- and 5'-CH 2) ppm. 
~3C-NMR (CDC13): 6 166.8 (CO), 133.9 (aromatic 
C), 131.4, 128.2, and 127.0 (3 × aromatic CH), 
78.2 (2'-CH), 67.2 (6'-CH2), 31.2, 24.8, and 22.7 
(C3'-, C4'- and C5'-CH 2) ppm. 

Anal. - Calcd for C12H15NO2: C, 70.24; H, 
7.32; N, 6.83%. Found: C, 70.08; H, 7.42; N, 
6.83%. 

2. 4. N-  (2'- Te trahydropyran)-N-methylbenzamide  
(2) 

To a mixture of 3,4-dihydro-2H-pyran (20 ml, 
220 mmol), and N-methylbenzamide (2.0 g, 14.8 
mmol) was added a catalytic amount of p- 
toluenesulfonic acid (50 mg). The reaction mix- 
ture was stirred at room temperature overnight, 
and then concentrated, and fractionated on a 
silica gel column by elution with acetone/hexane 
(1:2). The eluate containing compound 2 was 
evaporated under reduced pressure to afford the 
product as a viscous oil (2.82 g, 87%). 1H-NMR 
(CDC13): 6 7.30-7.60 (m, 5H, aromatic H), 4.62 
(m, 1H, 2'-CH), 3.20-4.10 (m, 2H, 6'-CH2), 2.70- 
3.00 (3H, NCH3), and 1.25-1.96 (m, 6H, 3'-, 4'- 
and 5'-CH 2) ppm. 13C-NMR (CDCI3): t5 171.6 
(CO), 135.9 (aromatic C), 129.8, 128.1, and 126.8 
(3 x aromatic CH), 86.1 (2'-CH), 67.7 (6'-CH2), 
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29.8, 24.6, and 22.8 (3'-, 4'-, and 5'-CH2), 27.8 
(NCH 3) ppm. 

Anal. - Calcd for C13H17NO2: C, 71.20; H, 
7.81; N, 6.39%. Found: C, 71.12; H, 7.86; N, 
6.31%. 

2.5. N-(2'- Tetrahydropyran)nicotinamide (3) 

aromatic H), 4.38-4.60 (m, 1H, 2'-CH), 3.10-4.05 
(m, 2H, 6'-CH2), 3.05 (m, 3H, NCH3), 1.2-2.0 (m, 
6H, 3'-, 4'- and 5'-CH 2) ppm. 13C-NMR (CDC13): 

169.2 (CO), 150.7, 147.8, and 134.8 (3 × aromatic 
CH), 131.8 (aromatic C), 123.1 (aromatic CH), 
86.3 (2'-CH), 67.7 (C'-CH2), 29.1, 24.5, and 22.8 
(C3'-, C4'- and C5'-CH2), 27.9 (NCH 3) ppm. 

To a suspension of nicotinamide (2.0 g, 16.4 
mmol) in toluene (100 ml), was added 3,4-dihy- 
dro-2H-pyran (10 ml, 110 mmol) and a catalytic 
amount of p-toluenesulfonic acid (50 mg). The 
mixture was refluxed overnight, the solvent evap- 
orated under reduced pressure, and the product 
purified on a silica gel column (acetone/hexane, 
1:1). The crude product was recrystallized from a 
mixture of ethyl acetate and hexane, to afford 
white crystals (2.60 g, 76.9%), m.p. 93-94 ° C. 1H- 
NMR (CDC13): 6 9.03 (s, 1H, aromatic H), 7.25- 
8.70 (m, 4H, aromatic H and NH), 5.24-5.40 (m, 
1H, 2'-CH), 3.56-4.08 (m, 2H, 6'-CH2), 1.42-2.00 
(m, 6H, 3'-, 4'-, and 5'-CH 2) ppm. 13C-NMR 
(CDC13): ~ 165.0 (CO), 151.9, 148.2, and 135.2 
(3 × aromatic CH), 129.6 (aromatic C), 123.1 
(aromatic CH), 78.3 (C2'-CH), 67.3 (6'-CH2), 31.0, 
24.8, and 22.6 (C3'-, C4'- and C6'-CH 2) ppm. 

Anal. - Calcd for CllH14N202: C, 64.08; H, 
6.80; N, 13.59%. Found C, 64.16; H, 6.87; N, 
13.65%. 

2.6. N-(2'- Tetrahydropyran)-N-methylnicotinamide 
(4) 

To a suspension of N-methylnicotinamide (2.0 
g, 14.7 mmol) in toluene (100 ml) was added 
3,4-dihydro-2H-pyran (15 ml, 165 mmol), and a 
catalytic amount of p-toluenesulfonic acid (50 
mg). The mixture was refluxed for 7 days, then 
evaporated to dryness under reduced pressure 
and purified on a silica gel column, eluting with 
acetone/hexane (1:1), to afford 4 as a light yellow 
oil (0.2 g, 6.2%). The product could not be ob- 
tained in crystalline form, and elemental analyses 
obtained were unsatisfactory. However, purity of 
the dried, solvent-free oil, as estimated by HPLC 
analysis and UV spectrophotometry in dioxane, 
was determined to be better than 98% area per- 
cent. 1H-NMR (CDCI3): t~ 7.20-8.80 (m, 4H, 

2. 7. Analytical procedure 

The degradation kinetics of compounds 1-4 
were followed by HPLC. Detection of compounds 
1 and 2 was carried out at 240 nm, whereas 
detection at 260 nm was utilized for compounds 3 
and 4. The mobile phase utilized for the analyses 
consisted of a mixture of 0.05 M phosphate buffer 
at pH 4.0 and acetonitrile (3:1 for the analysis of 

t.O 0`3 t£) 

CO 0'3 CO 

A 

L 
Fig. 1. HPLC chromatogram of 2 in 0.05 M phosphate buffer, 
pH 3.0 at 37 ° C at time 0 min (A) and after 2 h (B). The peak 
with a retention time of 3.3 min represents N-methylbe- 
nzamide, while that with a retention time of 8.6 min repre- 
sents compound 2. 
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1 and 2, and 4:1 for the analysis of 3 and 4). The 
flow rate was 1.0 m l / m i n .  Fig. 1 shows a typical 
HPLC chromatogram for the hydrolysis of  1 at 
t ime 0 min and after 2 h, both at pH 3.0. 

2.8. Kinet ic  m e a s u r e m e n t s  

All kinetic studies were performed in aqueous 
solutions at 37 ° C. The buffers were 0.05, 0.1 and 
0.2 M phosphate  buffer, and p H  values were 
adjusted to the desired value with 0.1 N HC1 or 
0.1 N NaOH.  A stock solution containing 1 m g / m l  
in methanol  of each of the four compounds was 
prepared  and 0.1 ml of this stock solution was 
mixed with 9.9 ml of  the desired buffer, which 
was equilibrated at 37 ° C, to initiate the degrada- 
tion. 1 ml of each of the solutions was withdrawn 
at suitable t ime intervals and the degradation was 
quenched by freezing in dry ice-methanol. Sam- 
ples were then analyzed by direct injection onto 
the HPLC column. 

3. Resul t s  and  d i s cus s ion  

The hydrolyses of amidals 1, 2 and 4 were 
found to follow first-order kinetics, and pseudo 
first-order rate constants were determined from 
the disappearance of the compounds as a func- 
tion of time. Amidal 3 was found to be resistant 
to acid-catalyzed degradation at pH 3, in 0.05 M 
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Fig. 2. Effect of buffer concentrations on the observed hydrol- 
ysis rate constants of compound 2 at different pH values. 

Table 1 
Observed hydrolysis rate constants (kob s) of compound 2 at 

different pH values and various phosphate buffer concentra- 
tions 

[Buffer] (M) kob S ( X 10-3) (h- 1) 
pH2.4 pH3.0 pH4.0 pH5.0 pH6.0 

0.05 368 89.8 15.7 4.1 0.41 
0.10 437 111 17.9 4.9 0.41 
0.20 551 153 21.9 5.0 0.41 
k o 311 72.9 13.7 4.0 0.41 

phosphate  buffer at 37 ° C. The effect of buffer 
concentration on the rate of hydrolysis was stud- 
ied using compound 2 as a model. As shown in 
Fig. 2 and Table 1, significant buffer catalysis was 
only observed in the acidic pH range (e.g., pH 
2.4), whereas no buffer effect was observed in the 
neutral p H  range (e.g., p H  6.0). This indicates 
that the degradation of 2 is catalyzed not only by 
specific acid catalysis but also by a general acid 
catalysis, involving the unionized buffer species, 
H3PO 4. The second-order rate constant calcu- 
lated for the involvement of H3PO 4 was approx. 4 
M-1  h-1.  The data in Table 1 also show that the 
rate of decomposition of 2 was dependent  upon 
hydrogen ion concentration. 

O 

R 

1: X = C H ,  R = H  

2: X = CH, R = CH 3 

3 : X = N , R = H  

4: X = N ,  R = CH 3 

5 

0 
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a) X = C H ,  R = H  4 
+ 5 

b) X = N H ,  R = H  6 

c) X = C H ,  R = C H 3  
+ 

d) X = N H ,  R = C H  3 

In order to compare the rates of hydrolyses of 
compounds 1-4, the degradation of all four com- 
pounds was studied at pH 3.0 in 0.05 M phos- 
phate  buffer at 37 ° C. The data obtained are 
shown in Table 2. It  can be clearly seen that 
introduction of an N-methyl group into the car- 
boxamide moiety of  compounds 1 and 3, to afford 
2 and 4, respectively, has a marked accelerating 
effect on the rate of acid-catalyzed hydrolysis. 
However, substitution of a 3-pyridyl group for the 
phenyl group in compounds 1 and 2, resulted in 
compounds having greater  stability towards acid- 
catalyzed degradation. 

In previous communications (Hussain et al., 
1973; Repta  and Hack, 1973), it was shown that 
compounds of structures 5 and 6, prepared  from 
the corresponding phenol  or carboxylic acid and 
2,3-dihydro-2H-pyran, undergo rapid hydrolysis, 
especially in acidic media (see Table 2). For ex- 
ample, the ace tamenophen acetal 5 has a half-life 
of less than 20 min at p H  3, whereas the corre- 
sponding benzoic acid derivative 6, has a half-life 

O O 

R / C ~ o . . J ' - . O  y ' R / C ~  + 

Table 2 
Comparison of observed hydrolysis rate constants and half- 

lives of compounds 1-6 in 0.05 M phosphate buffer at pH 3.0 
and 37 ° C 

Compounds kob s Half-life 

7.0 x 10 - 3 day- x 98.4 days 
2.5 x 10 -5 s -I  7.7 h 
n.d. a no degradation 

within 2 weeks 
3.9x 10 -6 s -1 49.5 h 
6.6x 10 -4 s -1 17.5 min 
4.5x 10 -2 s -1 15.5 s 

a Not determinable, decomposition too slow. 

of seconds at the same pH. It  is well-known that 
the rate of hydrolysis of acetals such as 5 is 
pH-dependent  and proceeds via protonation of 
the acetal O atom, followed by unimolecular 
cleavage of the C-O bond. Factors which govern 
the rate of  degradation are the presence of elec- 
tron-donating or withdrawing substituents in the 
phenyl ring, and the relative stability of the gen- 
erated carbonium ion. On the other hand, the 
hydrolysis of acylals such as 6 is generally first- 
order with a non-dependency on acid catalysis 
over the p H  range 3 - 9  (Hussain et al., 1974, 
1979; Hussain and Truelove, 1979). This is at- 
tributable to the carboxylate anion being a good 
leaving group, since it is resonance stabilized (see 
Scheme 1). Amidals formed from 2,3-dihydro- 
2H-pyran are much more stable to acid hydrolysis 
than either acetals or acylals. This can be at- 
tributed to the carboxamide moiety being a poor 
leaving group, making cleavage of the 2'-C-N 
bond difficult. The mechanism of degradation 
most likely involves an initial pre-equilibrium 

t 
@o. 

Scheme 1. 
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Scheme 2. 

protonation by hydroxonium ion followed by a 
rate-determining unimolecular decomposition to 
afford the enol form of the amide and the reso- 
nance-stabilized carbonium (see Scheme 2). The 
rate-enhancing effect of N-methylation results 
from the inductive effect of the methyl group, 
which stabilizes the transition state 7; in addition, 
the presence of the N-methyl group also renders 
the carboxamide group more basic, and hence 
more susceptible to protonation. The relative sta- 
bility of the 3-pyridyl amidals compared  to their 
phenyl counterparts,  at pH 3, is most likely due 
to these amidals existing as protonated pyri- 
dinium species under  the conditions studied, since 
the p K  a of the pyridinium moiety is expected to 
be in the range 3-5.  Such protonation would 
significantly decrease the basicity of these ami- 
dais, and prevent protonation of the carboxamide 
oxygen atom. 

In conclusion, the greater  stability of amidals 
to acid-base hydrolytic cleavage, compared  to ac- 
etals, over a wide range of pH, makes their utility 
as prodrugs of amido drugs less attractive. How- 
ever, it may be that these derivatives could be 
cleaved enzymatically, generating the parent  

compound.  Work is underway to examine the 
stability of these compounds in biological fluids. 
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